Topic:Vulnerability Detection
What is Vulnerability Detection? Vulnerability detection is the process of identifying security vulnerabilities in software applications or systems.
Papers and Code
Aug 07, 2025
Abstract:Multimodal Large Language Models (MLLMs) are becoming integral to autonomous driving (AD) systems due to their strong vision-language reasoning capabilities. However, MLLMs are vulnerable to adversarial attacks, particularly adversarial patch attacks, which can pose serious threats in real-world scenarios. Existing patch-based attack methods are primarily designed for object detection models and perform poorly when transferred to MLLM-based systems due to the latter's complex architectures and reasoning abilities. To address these limitations, we propose PhysPatch, a physically realizable and transferable adversarial patch framework tailored for MLLM-based AD systems. PhysPatch jointly optimizes patch location, shape, and content to enhance attack effectiveness and real-world applicability. It introduces a semantic-based mask initialization strategy for realistic placement, an SVD-based local alignment loss with patch-guided crop-resize to improve transferability, and a potential field-based mask refinement method. Extensive experiments across open-source, commercial, and reasoning-capable MLLMs demonstrate that PhysPatch significantly outperforms prior methods in steering MLLM-based AD systems toward target-aligned perception and planning outputs. Moreover, PhysPatch consistently places adversarial patches in physically feasible regions of AD scenes, ensuring strong real-world applicability and deployability.
Via

Aug 06, 2025
Abstract:Federated learning (FL) is vulnerable to backdoor attacks, yet most existing methods are limited by fixed-pattern or single-target triggers, making them inflexible and easier to detect. We propose FLAT (FL Arbitrary-Target Attack), a novel backdoor attack that leverages a latent-driven conditional autoencoder to generate diverse, target-specific triggers as needed. By introducing a latent code, FLAT enables the creation of visually adaptive and highly variable triggers, allowing attackers to select arbitrary targets without retraining and to evade conventional detection mechanisms. Our approach unifies attack success, stealth, and diversity within a single framework, introducing a new level of flexibility and sophistication to backdoor attacks in FL. Extensive experiments show that FLAT achieves high attack success and remains robust against advanced FL defenses. These results highlight the urgent need for new defense strategies to address latent-driven, multi-target backdoor threats in federated settings.
Via

Jul 30, 2025
Abstract:The increasing adoption of Large Language Models (LLMs) in software engineering has sparked interest in their use for software vulnerability detection. However, the rapid development of this field has resulted in a fragmented research landscape, with diverse studies that are difficult to compare due to differences in, e.g., system designs and dataset usage. This fragmentation makes it difficult to obtain a clear overview of the state-of-the-art or compare and categorize studies meaningfully. In this work, we present a comprehensive systematic literature review (SLR) of LLM-based software vulnerability detection. We analyze 227 studies published between January 2020 and June 2025, categorizing them by task formulation, input representation, system architecture, and adaptation techniques. Further, we analyze the datasets used, including their characteristics, vulnerability coverage, and diversity. We present a fine-grained taxonomy of vulnerability detection approaches, identify key limitations, and outline actionable future research opportunities. By providing a structured overview of the field, this review improves transparency and serves as a practical guide for researchers and practitioners aiming to conduct more comparable and reproducible research. We publicly release all artifacts and maintain a living repository of LLM-based software vulnerability detection studies.
* 36 pages + 17 pages references, 6 tables, 10 figures
Via

Jul 30, 2025
Abstract:With the increasing security issues in blockchain, smart contract vulnerability detection has become a research focus. Existing vulnerability detection methods have their limitations: 1) Static analysis methods struggle with complex scenarios. 2) Methods based on specialized pre-trained models perform well on specific datasets but have limited generalization capabilities. In contrast, general-purpose Large Language Models (LLMs) demonstrate impressive ability in adapting to new vulnerability patterns. However, they often underperform on specific vulnerability types compared to methods based on specialized pre-trained models. We also observe that explanations generated by general-purpose LLMs can provide fine-grained code understanding information, contributing to improved detection performance. Inspired by these observations, we propose SAEL, an LLM-based framework for smart contract vulnerability detection. We first design targeted prompts to guide LLMs in identifying vulnerabilities and generating explanations, which serve as prediction features. Next, we apply prompt-tuning on CodeT5 and T5 to process contract code and explanations, enhancing task-specific performance. To combine the strengths of each approach, we introduce an Adaptive Mixture-of-Experts architecture. This dynamically adjusts feature weights via a Gating Network, which selects relevant features using TopK filtering and Softmax normalization, and incorporates a Multi-Head Self-Attention mechanism to enhance cross-feature relationships. This design enables effective integration of LLM predictions, explanation features, and code features through gradient optimization. The loss function jointly considers both independent feature performance and overall weighted predictions. Experiments show that SAEL outperforms existing methods across various vulnerabilities.
* Accepted to ICSME 2025
Via

Aug 01, 2025
Abstract:Face Recognition Systems that operate in unconstrained environments capture images under varying conditions,such as inconsistent lighting, or diverse face poses. These challenges require including a Face Detection module that regresses bounding boxes and landmark coordinates for proper Face Alignment. This paper shows the effectiveness of Object Generation Attacks on Face Detection, dubbed Face Generation Attacks, and demonstrates for the first time a Landmark Shift Attack that backdoors the coordinate regression task performed by face detectors. We then offer mitigations against these vulnerabilities.
Via

Aug 01, 2025
Abstract:Existing AIG (AI-generated) text detectors struggle in real-world settings despite succeeding in internal testing, suggesting that they may not be robust enough. We rigorously examine the machine-learning procedure to build these detectors to address this. Most current AIG text detection datasets focus on zero-shot generations, but little work has been done on few-shot or one-shot generations, where LLMs are given human texts as an example. In response, we introduce the Diverse Adversarial Corpus of Texts Yielded from Language models (DACTYL), a challenging AIG text detection dataset focusing on one-shot/few-shot generations. We also include texts from domain-specific continued-pre-trained (CPT) language models, where we fully train all parameters using a memory-efficient optimization approach. Many existing AIG text detectors struggle significantly on our dataset, indicating a potential vulnerability to one-shot/few-shot and CPT-generated texts. We also train our own classifiers using two approaches: standard binary cross-entropy (BCE) optimization and a more recent approach, deep X-risk optimization (DXO). While BCE-trained classifiers marginally outperform DXO classifiers on the DACTYL test set, the latter excels on out-of-distribution (OOD) texts. In our mock deployment scenario in student essay detection with an OOD student essay dataset, the best DXO classifier outscored the best BCE-trained classifier by 50.56 macro-F1 score points at the lowest false positive rates for both. Our results indicate that DXO classifiers generalize better without overfitting to the test set. Our experiments highlight several areas of improvement for AIG text detectors.
* MPhil in Advanced Computer Science thesis for University of Cambridge
Via

Jul 30, 2025
Abstract:Vision-Language Models (VLMs) are increasingly used as perceptual modules for visual content reasoning, including through captioning and DeepFake detection. In this work, we expose a critical vulnerability of VLMs when exposed to subtle, structured perturbations in the frequency domain. Specifically, we highlight how these feature transformations undermine authenticity/DeepFake detection and automated image captioning tasks. We design targeted image transformations, operating in the frequency domain to systematically adjust VLM outputs when exposed to frequency-perturbed real and synthetic images. We demonstrate that the perturbation injection method generalizes across five state-of-the-art VLMs which includes different-parameter Qwen2/2.5 and BLIP models. Experimenting across ten real and generated image datasets reveals that VLM judgments are sensitive to frequency-based cues and may not wholly align with semantic content. Crucially, we show that visually-imperceptible spatial frequency transformations expose the fragility of VLMs deployed for automated image captioning and authenticity detection tasks. Our findings under realistic, black-box constraints challenge the reliability of VLMs, underscoring the need for robust multimodal perception systems.
* Keywords: Vision-Language Models, Frequency-Domain Perturbations,
Adversarial Robustness, Image Authenticity, Reliability
Via

Jul 30, 2025
Abstract:Recent advances in text-to-image diffusion models have enabled the creation of a new form of digital art: optical illusions--visual tricks that create different perceptions of reality. However, adversaries may misuse such techniques to generate hateful illusions, which embed specific hate messages into harmless scenes and disseminate them across web communities. In this work, we take the first step toward investigating the risks of scalable hateful illusion generation and the potential for bypassing current content moderation models. Specifically, we generate 1,860 optical illusions using Stable Diffusion and ControlNet, conditioned on 62 hate messages. Of these, 1,571 are hateful illusions that successfully embed hate messages, either overtly or subtly, forming the Hateful Illusion dataset. Using this dataset, we evaluate the performance of six moderation classifiers and nine vision language models (VLMs) in identifying hateful illusions. Experimental results reveal significant vulnerabilities in existing moderation models: the detection accuracy falls below 0.245 for moderation classifiers and below 0.102 for VLMs. We further identify a critical limitation in their vision encoders, which mainly focus on surface-level image details while overlooking the secondary layer of information, i.e., hidden messages. To address this risk, we explore preliminary mitigation measures and identify the most effective approaches from the perspectives of image transformations and training-level strategies.
* Accepted at ICCV 2025
Via

Aug 01, 2025
Abstract:The generalization capabilities of Large Language Models (LLMs) have led to their widespread deployment across various applications. However, this increased adoption has introduced several security threats, notably in the forms of jailbreaking and data leakage attacks. Additionally, Retrieval Augmented Generation (RAG), while enhancing context-awareness in LLM responses, has inadvertently introduced vulnerabilities that can result in the leakage of sensitive information. Our contributions are twofold. First, we introduce a methodology to analyze historical interaction data from an LLM system, enabling the generation of usage maps categorized by topics (including adversarial interactions). This approach further provides forensic insights for tracking the evolution of jailbreaking attack patterns. Second, we propose LeakSealer, a model-agnostic framework that combines static analysis for forensic insights with dynamic defenses in a Human-In-The-Loop (HITL) pipeline. This technique identifies topic groups and detects anomalous patterns, allowing for proactive defense mechanisms. We empirically evaluate LeakSealer under two scenarios: (1) jailbreak attempts, employing a public benchmark dataset, and (2) PII leakage, supported by a curated dataset of labeled LLM interactions. In the static setting, LeakSealer achieves the highest precision and recall on the ToxicChat dataset when identifying prompt injection. In the dynamic setting, PII leakage detection achieves an AUPRC of $0.97$, significantly outperforming baselines such as Llama Guard.
* 22 pages, preprint
Via

Jul 29, 2025
Abstract:The increasing digitization of smart grids has improved operational efficiency but also introduced new cybersecurity vulnerabilities, such as False Data Injection Attacks (FDIAs) targeting Automatic Generation Control (AGC) systems. While machine learning (ML) and deep learning (DL) models have shown promise in detecting such attacks, their opaque decision-making limits operator trust and real-world applicability. This paper proposes a hybrid framework that integrates lightweight ML-based attack detection with natural language explanations generated by Large Language Models (LLMs). Classifiers such as LightGBM achieve up to 95.13% attack detection accuracy with only 0.004 s inference latency. Upon detecting a cyberattack, the system invokes LLMs, including GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o mini, to generate human-readable explanation of the event. Evaluated on 100 test samples, GPT-4o mini with 20-shot prompting achieved 93% accuracy in identifying the attack target, a mean absolute error of 0.075 pu in estimating attack magnitude, and 2.19 seconds mean absolute error (MAE) in estimating attack onset. These results demonstrate that the proposed framework effectively balances real-time detection with interpretable, high-fidelity explanations, addressing a critical need for actionable AI in smart grid cybersecurity.
* Accepted Publication
Via
