Topic:Vulnerability Detection
What is Vulnerability Detection? Vulnerability detection is the process of identifying security vulnerabilities in software applications or systems.
Papers and Code
May 05, 2025
Abstract:The recent growth in the use of Large Language Models has made them vulnerable to sophisticated adversarial assaults, manipulative prompts, and encoded malicious inputs. Existing countermeasures frequently necessitate retraining models, which is computationally costly and impracticable for deployment. Without the need for retraining or fine-tuning, this study presents a unique defense paradigm that allows LLMs to recognize, filter, and defend against adversarial or malicious inputs on their own. There are two main parts to the suggested framework: (1) A prompt filtering module that uses sophisticated Natural Language Processing (NLP) techniques, including zero-shot classification, keyword analysis, and encoded content detection (e.g. base64, hexadecimal, URL encoding), to detect, decode, and classify harmful inputs; and (2) A summarization module that processes and summarizes adversarial research literature to give the LLM context-aware defense knowledge. This approach strengthens LLMs' resistance to adversarial exploitation by fusing text extraction, summarization, and harmful prompt analysis. According to experimental results, this integrated technique has a 98.71% success rate in identifying harmful patterns, manipulative language structures, and encoded prompts. By employing a modest amount of adversarial research literature as context, the methodology also allows the model to react correctly to harmful inputs with a larger percentage of jailbreak resistance and refusal rate. While maintaining the quality of LLM responses, the framework dramatically increases LLM's resistance to hostile misuse, demonstrating its efficacy as a quick and easy substitute for time-consuming, retraining-based defenses.
Via

May 03, 2025
Abstract:Automated evidence-based misinformation detection systems, which evaluate the veracity of short claims against evidence, lack comprehensive analysis of their adversarial vulnerabilities. Existing black-box text-based adversarial attacks are ill-suited for evidence-based misinformation detection systems, as these attacks primarily focus on token-level substitutions involving gradient or logit-based optimization strategies, which are incapable of fooling the multi-component nature of these detection systems. These systems incorporate both retrieval and claim-evidence comparison modules, which requires attacks to break the retrieval of evidence and/or the comparison module so that it draws incorrect inferences. We present CAMOUFLAGE, an iterative, LLM-driven approach that employs a two-agent system, a Prompt Optimization Agent and an Attacker Agent, to create adversarial claim rewritings that manipulate evidence retrieval and mislead claim-evidence comparison, effectively bypassing the system without altering the meaning of the claim. The Attacker Agent produces semantically equivalent rewrites that attempt to mislead detectors, while the Prompt Optimization Agent analyzes failed attack attempts and refines the prompt of the Attacker to guide subsequent rewrites. This enables larger structural and stylistic transformations of the text rather than token-level substitutions, adapting the magnitude of changes based on previous outcomes. Unlike existing approaches, CAMOUFLAGE optimizes its attack solely based on binary model decisions to guide its rewriting process, eliminating the need for classifier logits or extensive querying. We evaluate CAMOUFLAGE on four systems, including two recent academic systems and two real-world APIs, with an average attack success rate of 46.92\% while preserving textual coherence and semantic equivalence to the original claims.
Via

May 03, 2025
Abstract:Achieving resilience remains a significant challenge for Unmanned Aerial Vehicle (UAV) communications in 5G and 6G networks. Although UAVs benefit from superior positioning capabilities, rate optimization techniques, and extensive line-of-sight (LoS) range, these advantages alone cannot guarantee high reliability across diverse UAV use cases. This limitation becomes particularly evident in urban environments, where UAVs face vulnerability to jamming attacks and where LoS connectivity is frequently compromised by buildings and other physical obstructions. This paper introduces DET-FAIR- WINGS ( Detection-Enhanced Transformer Framework for AI-Resilient Wireless Networks in Ground UAV Systems), a novel solution designed to enhance reliability in UAV communications under attacks. Our system leverages multi-agent reinforcement learning (MARL) and transformer-based detection algorithms to identify attack patterns within the network and subsequently select the most appropriate mechanisms to strengthen reliability in authenticated UAV-Base Station links. The DET-FAIR-WINGS approach integrates both discrete and continuous parameters. Discrete parameters include retransmission attempts, bandwidth partitioning, and notching mechanisms, while continuous parameters encompass beam angles and elevations from both the Base Station (BS) and user devices. The detection part integrates a transformer in the agents to speed up training. Our findings demonstrate that replacing fixed retransmission counts with AI-integrated flexible approaches in 5G networks significantly reduces latency by optimizing decision-making processes within 5G layers.
Via

May 01, 2025
Abstract:Protecting cloud applications is crucial in an age where security constantly threatens the digital world. The inevitable cyber-attacks throughout the CI/CD pipeline make cloud security innovations necessary. This research is motivated by applying Natural Language Processing (NLP) methodologies, such as Topic Modelling, to analyse cloud security data and predict future attacks. This research aims to use topic modelling, specifically Latent Dirichlet Allocation (LDA) and Probabilistic Latent Semantic Analysis (pLSA). Utilising LDA and PLSA, security-related text data, such as reports, logs, and other relevant documents, will be analysed and sorted into relevant topics (such as phishing or encryption). These algorithms may apply through Python using the Gensim framework. The topics shall be utilised to detect vulnerabilities within relevant CI/CD pipeline records or log data. This application of Topic Modelling anticipates providing a new form of vulnerability detection, improving overall security throughout the CI/CD pipeline.
* 6 pages, 5 figures, 28th ACIS International Winter Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD 2024-Winter)
Via

May 03, 2025
Abstract:The Open Radio Access Network (O-RAN) architecture is revolutionizing cellular networks with its open, multi-vendor design and AI-driven management, aiming to enhance flexibility and reduce costs. Although it has many advantages, O-RAN is not threat-free. While previous studies have mainly examined vulnerabilities arising from O-RAN's intelligent components, this paper is the first to focus on the security challenges and vulnerabilities introduced by transitioning from single-operator to multi-operator RAN architectures. This shift increases the risk of untrusted third-party operators managing different parts of the network. To explore these vulnerabilities and their potential mitigation, we developed an open-access testbed environment that integrates a wireless network simulator with the official O-RAN Software Community (OSC) RAN intelligent component (RIC) cluster. This environment enables realistic, live data collection and serves as a platform for demonstrating APATE (adversarial perturbation against traffic efficiency), an evasion attack in which a malicious cell manipulates its reported key performance indicators (KPIs) and deceives the O-RAN traffic steering to gain unfair allocations of user equipment (UE). To ensure that O-RAN's legitimate activity continues, we introduce MARRS (monitoring adversarial RAN reports), a detection framework based on a long-short term memory (LSTM) autoencoder (AE) that learns contextual features across the network to monitor malicious telemetry (also demonstrated in our testbed). Our evaluation showed that by executing APATE, an attacker can obtain a 248.5% greater UE allocation than it was supposed to in a benign scenario. In addition, the MARRS detection method was also shown to successfully classify malicious cell activity, achieving accuracy of 99.2% and an F1 score of 0.978.
Via

May 02, 2025
Abstract:This paper describes the mwBTFreddy dataset, a resource developed to support flash flood damage assessment in urban Malawi, specifically focusing on the impacts of Cyclone Freddy in 2023. The dataset comprises paired pre- and post-disaster satellite images sourced from Google Earth Pro, accompanied by JSON files containing labelled building annotations with geographic coordinates and damage levels (no damage, minor, major, or destroyed). Developed by the Kuyesera AI Lab at the Malawi University of Business and Applied Sciences, this dataset is intended to facilitate the development of machine learning models tailored to building detection and damage classification in African urban contexts. It also supports flood damage visualisation and spatial analysis to inform decisions on relocation, infrastructure planning, and emergency response in climate-vulnerable regions.
Via

May 02, 2025
Abstract:While machine learning has significantly advanced Network Intrusion Detection Systems (NIDS), particularly within IoT environments where devices generate large volumes of data and are increasingly susceptible to cyber threats, these models remain vulnerable to adversarial attacks. Our research reveals a critical flaw in existing adversarial attack methodologies: the frequent violation of domain-specific constraints, such as numerical and categorical limits, inherent to IoT and network traffic. This leads to up to 80.3% of adversarial examples being invalid, significantly overstating real-world vulnerabilities. These invalid examples, though effective in fooling models, do not represent feasible attacks within practical IoT deployments. Consequently, relying on these results can mislead resource allocation for defense, inflating the perceived susceptibility of IoT-enabled NIDS models to adversarial manipulation. Furthermore, we demonstrate that simpler surrogate models like Multi-Layer Perceptron (MLP) generate more valid adversarial examples compared to complex architectures such as CNNs and LSTMs. Using the MLP as a surrogate, we analyze the transferability of adversarial severity to other ML/DL models commonly used in IoT contexts. This work underscores the importance of considering both domain constraints and model architecture when evaluating and designing robust ML/DL models for security-critical IoT and network applications.
Via

May 02, 2025
Abstract:Large Language Models (LLMs) have become central to numerous natural language processing tasks, but their vulnerabilities present significant security and ethical challenges. This systematic survey explores the evolving landscape of attack and defense techniques in LLMs. We classify attacks into adversarial prompt attack, optimized attacks, model theft, as well as attacks on application of LLMs, detailing their mechanisms and implications. Consequently, we analyze defense strategies, including prevention-based and detection-based defense methods. Although advances have been made, challenges remain to adapt to the dynamic threat landscape, balance usability with robustness, and address resource constraints in defense implementation. We highlight open problems, including the need for adaptive scalable defenses, explainable security techniques, and standardized evaluation frameworks. This survey provides actionable insights and directions for developing secure and resilient LLMs, emphasizing the importance of interdisciplinary collaboration and ethical considerations to mitigate risks in real-world applications.
Via

May 02, 2025
Abstract:As large language models (LLMs) continue to evolve, it is critical to assess the security threats and vulnerabilities that may arise both during their training phase and after models have been deployed. This survey seeks to define and categorize the various attacks targeting LLMs, distinguishing between those that occur during the training phase and those that affect already trained models. A thorough analysis of these attacks is presented, alongside an exploration of defense mechanisms designed to mitigate such threats. Defenses are classified into two primary categories: prevention-based and detection-based defenses. Furthermore, our survey summarizes possible attacks and their corresponding defense strategies. It also provides an evaluation of the effectiveness of the known defense mechanisms for the different security threats. Our survey aims to offer a structured framework for securing LLMs, while also identifying areas that require further research to improve and strengthen defenses against emerging security challenges.
Via

May 02, 2025
Abstract:Hierarchical Federated Learning (HFL) has recently emerged as a promising solution for intelligent decision-making in vehicular networks, helping to address challenges such as limited communication resources, high vehicle mobility, and data heterogeneity. However, HFL remains vulnerable to adversarial and unreliable vehicles, whose misleading updates can significantly compromise the integrity and convergence of the global model. To address these challenges, we propose a novel defense framework that integrates dynamic vehicle selection with robust anomaly detection within a cluster-based HFL architecture, specifically designed to counter Gaussian noise and gradient ascent attacks. The framework performs a comprehensive reliability assessment for each vehicle by evaluating historical accuracy, contribution frequency, and anomaly records. Anomaly detection combines Z-score and cosine similarity analyses on model updates to identify both statistical outliers and directional deviations in model updates. To further refine detection, an adaptive thresholding mechanism is incorporated into the cosine similarity metric, dynamically adjusting the threshold based on the historical accuracy of each vehicle to enforce stricter standards for consistently high-performing vehicles. In addition, a weighted gradient averaging mechanism is implemented, which assigns higher weights to gradient updates from more trustworthy vehicles. To defend against coordinated attacks, a cross-cluster consistency check is applied to identify collaborative attacks in which multiple compromised clusters coordinate misleading updates. Together, these mechanisms form a multi-level defense strategy to filter out malicious contributions effectively. Simulation results show that the proposed algorithm significantly reduces convergence time compared to benchmark methods across both 1-hop and 3-hop topologies.
Via
